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ABSTRACT .*od0- 07- /r- o/gft

This paper describes a technique to analyze the potential speedup of distributed simulation programs. A distri-

buted simulation strategy is proposed which minimizes execution time through the use of an oracle to control the simula-

tion. Because the strategy relies on an oracle, it cannot be used for practical simulations. However the strategy facili-

tates performance evaluations of distributed simulation strategies by providing a useful point of comparison and can be

used to determine the suitability of specific applications for implementation on a parallel computer. Based on the pro-

posed strategy, a tool has been developed to determine the maximum performance which can be achieved from a distri-

buted simulation program. In this paper we describe the technique and its use in evaluating the parallelism available in

distributed simulators of parallel computer system s._)

-Keywords: discrete simulation, distributed simulation, parallel processing. _

1. INTRODUCTION '-

Computer simulation is widely used to evaluate and design systems. However, due to the complex nature of many

systems, detailed simulations often require too much time to be practical. For example, gate level simulations of large

VLSI circuits can require months of computer time (Pfisterl982, Franklinl984).

Distributed simulation, the execution of discrete event simulation programs on a multiple processor computer, is 0 3
n-

one possible solution to this problem. The emergence of parallel computers in the commercial marketplace has

increased interest in this approach. Machines such as the BBN Butterfly Tm , the Intel iPSCrm , and the NCube/Ten-

already provide users access to hundreds of powerful microprocessors in a single, integrated system. ... ! Codes
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However, distributed simulation has yet to be proven as a viable method for obtaining significant speedups of

discrete event simulation programs. Empirical studies of distributed simulations of queuing networks have shown that

some networks which initially appear to exhibit a reasonable degree of parallelism may in fact yield very disappointing

performance (Reedappear). In some cases the distributed simulator executed more slowly than a single processor event

list implementation.

When a distributed simulation program initially yields poor performance, the programmer is faced with a very

difficult optimization problem. Poor performance may result from a number of causes. The simulation program may

have been poorly partitioned into individual processes. Bottleneck processes may have been inadvertently created.

Alternatively, the distributed simulation strategy may be the culprit Any distributed simulation strategy will require

some overhead to ensure that events are properly sequenced. This overhead may take the form of null messages,

deadlock detection and recovery algorithms, or rollbacks (Chandy 1979, Chandyl981,Jefferson1985). In general, deter-

mination of the ultimate cause of poor performance is a difficult, time consuming problem. Even uniprocessor simula-

tion programs tend to be large, complex pieces of software with components that interact in subtle ways. A distributed

implementation introduces complex dynamic parallel interactions, making the task even more difficult.

New tools are required to analyze distributed simulation programs in a convenient way in order to aid optimization

efforts. In particular, a means of separating the behavior of the distributed simulation strategy from that of the simula-

tion program is necessary. It is clear that some simulation programs are inherently sequential, and efforts to use distri-

buted simulation techniques to improve their performance will be wasted. Such programs should be identified quickly to

avoid futile attempts to obtain an efficient distributed implementation. On the other hand, application programs that

exhibit a high degree of parallelism should also be quickly identified.

This paper will describe a tool which has been developed to measure the parallelism of a simulation program by

measuring the speedup which can be obtained when an optimal distributed simulation strategy is used. Results from

using this tool provide an upper bound on performance for a given distributed simulation program. This approach is

similar in spirit to the VMIN algorithm which was developed to evaluate paging algorithms in virtual memory systems

(Prievel976). The optimal simulation strategy, called OSim, relies on an oracle to eliminate distributed simulation over-

heads such as null messages, deadlock detection and recovery, and rollback. Using OSim, a process blocks only when

data dependencies dictate that it must wait for another message to arrive.

The analysis tool was developed in the context of the Simon simulation system, an object-oriented simulation

package designed for functional and instruction level simulation of parallel computer systems
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(Fujimotol9S5. Swopel986). Simon currently uses a uniprocessor host, although it was designed to facilitate implemen-

tation on a parallel processor. The particular tool developed for this study was designed using Simon, however the tech-

nique which is used is applicable to any distributed simulation program.

We will first discuss the simulation model and the optimal simulation strategy, OSim. Then the tool which was

developed using Simon will be described. Finally, parallelism measurements of several simulators for various parallel

computer architectures will be presented.

2. THE DISTRIBUTED SIMULATION PROGRAM

We assume the system being modeled consists of some number of physical processes which interact in some

manner. The simulation program consists of a collection of logical processes (LPs), each modeling a single physical

process. For example, a multicomputer system might be divided into a collection of microcomputers and an intercon-

nection switch, e.g. a global bus. The most natural mapping of this physical system to logical processes is to create one

instance of a "switch" process to model the bus and a "processor" process to model each microcomputer.

Interactions between physical processes are modeled by timestamped messages passed between the corresponding

logical processes. The timestamp indicates the simulated time at which the message arrives at the receiving process.

Timestamps ensure that events are simulated in the proper sequence. Each LP must process messages in non-decreasing

timestamp order. Logical processes repeatedly wait for the next message to be received, simulate the physical process,

and then send zero or more message to other processes.

Ensuring that each LP processes messages in non-decreasing time stamp order is at the heart of the distributed

simulation problem. Consider the situation depicted in figure 1 below. Assume that each process is executing on a dif-

ferent processor. LP A is ready to process another incoming message. Messages with timestamps of 10 and 50 are wait-

ing to be processed. However, process A has yet to receive a message from process D. Since each process must act

upon messages in non-decreasing timestamp order, process A is faced with a dilemma: should it wait for the next mes-

sage from process D or should it go ahead and process the timestamp 10 message? If the timestamp 10 message is pro-

cessed, then process A risks simulating events out of order. If it decides to wait, deadlock can result unless appropriate

precautions are taken. Several solutions to this problem exist, each requiring a certain amount of overhead to ensure

messages are properly sequenced (Misral986, Jefferson 1985).
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Figure 1: Sample distributed simulator.

3. OSIM: AN OPTIMAL SIMULATION STRATEGY

OSim is a distributed simulation strategy which eliminates the overhead associated with existing distributed simu-

lation strategies. These existing strategies use mechanisms such as null messages, deadlock detection and recovery, and

checkpoints and rollbacks to ensure correctness. OSim does not require such mechanisms because it relies on an oracle

to direct logical processes to either proceed and process messages which have arrived or to wait. OSim is not a practical

algorithm for use in distributed simulation implementations because the simulation program must first be executed to

completion to generate the oracle.

Using OSim, the situation in figure I can be resolved, because process A can examine the oracle to determine if

the next message from process D will have a timestamp smaller than 10. Blocking is therefore limited to those cases in

which the next event that should be processed is a message that has not yet arrived. While OSim does not provide a

practical solution to the distributed simulation problem, it does provide a means to measure the maximum amount of

speedup which a distributed simulation program might obtain and thereby provide an upper bound on performance.

A key component of the optimal distributed simulation strategy is the oracle which is used to notify processes

when they may proceed and when they must wait for one or more additional message(s). The oracle is created by first

executing the simulation program to completion e.g., on a conventional uwiprocessor using an event list to ensure events

are properly sequenced. The strategy is analagous to the "instant replay" technique which has been proposed to debug

parallel programs (LeBlancl987).

The oracle contains a sequence of oracle elements, one for each event i.e., message, generated by the simulator.

Each message is uniquely identified by a tag containing two fields: a unique number identifying the logical process

which generated the message and a message sequence number to distinguish messages generated by that process. An
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oracle entry consists of the destination logical process number and the message tag. During the uniprocessor simulation,

entries are placed in the oracle as the messages are removed from the event queue and passed to the logical process. A

timestanp ordering is therefore preserved for the messages received by each destination process.

The information in the oracle log is used by the distribued simulation program to identify the next message which

should be delivered to each logical process. The following algorithm is executed when the logical process is ready to

process another message:

NextMsgNumber:= ConsultOracle);

Found := SearchlnputQueues(NextMsgNumber);

IF NOT Found THEN

WaitForMsg(NextMsgNumber);

ENDIF;

Msg:= RemoveFromInputQueue (NextMsgNumber);

RETURN Msg;

The ConsultOracle procedure returns the oracle entry for the next message which should be processed by the logi-

cal process calling it. SearchlnputQueues examines the list of messages which have arrived, but have not yet been pro-

cessed, and returns a boolean value of true if the message is currently available. If received messages are stored in

timestamp order in a buffer associated with the input port on which the message arrived, only the first message of each

buffer needs to be checked. If the message is found, it is removed from the input buffer and the logical process is

allowed to simulate the activity associated with the message. Otherwise, the logical process blocks until the desired

message arrives.

4. THE SIMON KERNEL

The OSim algorithm was implemented in the context of the Simon simulation system, so we will first make a brief

digression to describe important features of Simon before describing the tool. Simon provides a flexible and adaptable

framework for constructing simulators for a wide variety of parallel computer systems (Fujimotol985). A simulator

consists of a set of software building blocks. Each building block i.e., object, simulates a specific component of the

parallel system. Objects may be defined in terms of other objects, supporting a hierarchical view of the system. Simon
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provides a suite of procedures, data types and variables that define the interface to the programmer. Software in the

Simon kernel consists of:

• a set of basic, low level primitives necessary to support an object-oriented simulation environment, and

" a set of library modules that use low level kernel primitives to build higher level mechanisms.

A simulation program in Simon includes a collection of autonomous objects. Interactions between objects are

accomplished using timestamped messages. Each object defines a number of input and output ports through which all

messages must pass.

The basic mechanisms provided by the Simon kernel include facilities for:

" instantiating objects,

" creating ports,

" interconnecting ports,

* exchanging timestamped messages, and

" specifying hierarchical structures.

4.1. SIMON OBJECTS

The main program is responsible for instantiating each object and connecting its ports. Each object is defined by

an object procedure which begins execution as a coroutine when the object is instantiated. The object procedure first

defines ports used by the object, and then simulates the behavior of the object. An object is equivalent to a logical pro-

cess, described earlier.

4.2. SIMON PORTS

Interactions between an object and its external environment are through messages sent on output ports and

received on input ports. No restrictions are placed on the number or type of ports an object can create. Although com-

municating objects must agree on the type and format of information transmitted through the ports, objects do not in

general know with which, or even with how many other objects it is communicating. This increases the autonomy of

each object and facilitates arbitrary interconnections.

Any output port may be connected to any input port regardless of how many other connections have already been

established to either port or on which object the ports reside. Messages from several output ports may be merged bI
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connecting them to a single input port. Such messages are received in non-decreasing timestamp order. The order in

which messages with the same timestamp are received is nondeterministic. Conversely, an output port may fanout to

several input ports, implementing broadcast or multicast communications.

4.3. THE SIMON LIBRARY

Although application programmers may use the mechanisms defined in the kernel directly, most use higher level

mechanisms built on top of these primitives, as provided in the Simon library. Some of the facilities include:

" queuing and priority queue abstractions

" buffered input ports

" arrays of ports

" random number generators

" explicit advancement of simulated time

The Simon kernel passes incoming messages to an object in non-decreasing timestamp order as they arrive, with

no buffering. Two types of buffered input ports are provided - one which provides an unbounded first-in-first-out queue

to hold arriving messages and another which provides semantics similar to shared memory. Queued input ports allow

programs to wait for messages to arrive on specific input ports while messages arriving on other ports are automatically

buffered. The second mechanism, referred to as registers, is associated with local memory variables within an object.

The contents of incoming messages are automatically written into this memory when the message arrives, overwriting

the previous contents. This is useful, for example, if the remote object is generating status information which another

object reads.

S. PARALLELISM IN SIMULATION PROGRAMS

In this study, a uniprocessor simulation was used to study a distributed simulator executing a parallel application

program. A uniprocessor based tool was developed to measure the speedup which can be obtained when the optimal dis-

tributed simulation strategy (OSim) is used. A distributed implementation of the tools is currently under development.

This study is similar in spirit to the work done by Livny (Livnyl985). Measurements of parallelism in switch

level simulations were also made by Frank (Frankl986). Unlike previous studies, the technique presented here may be

easily extended for implementatior on a parallel processor. Also, highly accurate timing statistics are obtained because
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detailed instruction level simulation of the distributed simulation program is used. However, parameterized lumped-sum

_ costs are used to instrument operating system calls and communications overhead.

The distributed simulator is shown in figure 2 below. It consists of the Simon and OSim simulation kernels, the

virtual machine layer, and the application layer. Support for basic simulation primitives is provided by the kernels. The

virtual machine layer provides the user with an application oriented interface to the kernel primitives. The application

layer consists of the user's application code.

The parallelism measurement program OSim, is implemented as a software module which is inserted between the

virtual machine layer and the Simon kernel (see figure 2). It is completely transparent to the application, having an inter-

face identical to that of the Simon kernel. Since OSim was built on top of the Simon kernel and uses many of Simon's

facilities, it was relatively simple to implement. OSim required less than 1000 lines of code and took approximately one

man-month to implement.

ApplicationLayer

__y__ 

Application

[ Virtual Machine

Layer Time Domain

SOSim
Kernel

_Real-time

[ Simon Time Domain

Kernel

Figure 2: Time Domains.
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5.1. TIME DOMAINS

In performing a simulation of a distributed simulator, two distinct time domains must be maintained (see figure 2):

(1) The application program deals with time in the application domain. Timestamps in this domain are called appli-

cation timestamps and refer to time in the physical system being simulated.

(2) The distributed simulator time domain corresponds to time which elapses while the distributed simulator is exe-

cuting. Timestamps in this domain are referred to as real-time timestamps, since they refer to real time in the

frame of reference of the distributed simulator.

Both of these should be viewed as independent of each other, and independent of the passage of 'wall-clock' time as the

distributed simulation executes on its uniprocessor host, in this case a VAX.

Messages generated by the application program have application timestamps which are meaningful in the applica-

tion time domain. The OSim kernel encapsulates each message, including its application timestamp, into an OSim mes-

sage. The timestamp of the encapsulated message is a real-time timestamp which indicates the time in the distributed

simulation at which the message is received. The Simon kernel ensures that OSim messages are processed in non-

decreasing real-time timestamp order, faithfully reproducing the behavior of the distributed simulator. When the mes-

sage is received, the OSim kernel removes the message encapsulation and passes the original message to the receiving

logical process.

Just as the Simon kernel ensures that real-time timestamps are processed in non-decreasing timestamp order, the

OSim kernel ensures that application programs process incoming messages in non-decreasing application timestamp

order. This is crucial to ensure correctness in the simulation of the distributed simulator, otherwise the simulation of the

application program would be erroneous.

S.2. DIRECT-EXECUTION SIMULATION

Traditionally, instruction level simulation is implemented through a software interpret-c which incurs a severe per-

formance penalty of two to three orders of magnitude when compared to direct execution (Tamir1981). In this study the

problem is overcome by directly executing the application program on the host processor rather than through a software

interpreter (Fujimotol983, Campbell 1985).

First, the program is compiled to machine code for the host machine (a Vaxr ), and then instrumented. Basic

blocks of code which may only be entered (exited) at the first (last) instruction of the block are identified, and an
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increment instruction is inserted at the end of each block to indicate the amount of time required to execute this code on

the target machine. This allows a relatively crude, but efficient timing model to be used based on the relative MIP rates

of the host and target processors. The simulation programs used in this study rely heavily on the direct execution

method to achieve efficient execution.

6. VIRTUAL MACHINE AND APPLICATION LAYERS

The virtual machine layer uses some subset of the mechanisms and abstractions provided by the kernel layers to

provide an application specific interface to the application programmer. For example, one user interface might support

development of application programs for an MIMD machine. Another might provide a hardware oriented interface

designed for modeling switching components. Since both user interfaces are based on an integrated set of tools provided

by the kernels, both of these different interfaces may be used in a single simulation program.

User interfaces have been developed for a number applications. In particular, several emulators of parallel archi-

tectures have been developed and used at the University of Utah. We shall briefly describe three interfaces here: an

SIMD machine, a systolic array, and an asynchronous hypercube-based MIMD machine. Later, results will be presented

which describe the parallelism available in each of these interfaces for typical application programs.

,.1. THE SIMD USER INTERFACE

The SIMD user interface models a machine consisting of 32 PEs, a control unit, and a data switch (see figure 3).

Each PE contains a set of registers and local memory and has a simple "LOAD/STORE" architecture. The switch is

capable of performing any permutation and can transmit a single word of data to and from each of the 32 PEs every

machine clock cycle. The control unit is a general purpose processor whose instruction set consists of traditional

sequential instructions which are executed within the control unit, and parallel instructions which are broadcast to the

PEs for parallel execution.

Users of the SIMD machine develop application programs which are executed by the control unit. In the current

implementation, sequential instructions are programmed using sequential Modula-2 code. Parallel broadcast instructions

are implemented through procedure calls. A procedure is defined for each broadcast instruction supported by the SIMD

architecture. Each broadcast instruction includes a mask which indicates which PEs are to be enabled and which arc dis-

abled during execution of the instruction. At the same time, a switch setting is also specified to control the configuration

of the interconnection network.

-10-
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PE 31

Figure 3: SIMD Virtual Machine.

6.2. THE SYSTOLIC ARRAY USER INTERFACE

The systolic array interface is based on a two-dimensional grid of processing elements. Users specify

procedure(s) describing the behavior of PEs, and indicate which procedures are mapped to which grid points. The user

interface automatically interconnects each PE with its neighboring PEs. Mechanisms are also provided to feed data into

the array and to print results as they leave.

Each PE procedure defines input and output registers in any of the eight compass directions to indicate where

incoming data is to be expected and where results are to be sent. Local variables are associated with input registers

which are automatically updated when data arrives. The code for the procedure typically contains a loop which comn-

putes a new value from these local 'input' variables, stores the results into output registers, and then waits for the next

clock cycle to begin. The latter function is accomplished by calling the "Wait4Clock" procedure defined by the user

interface.

6.3. THE HYPERCUBE USER INTERFACE

The user of the MIMD hypercube interface must develop Modula-2 code for processors in the hypercubc. In the

current implementation, hypercubes containing up to 256 processors may be simulated. Interconnection of processing

elements again is performed automatically by the user interface. Synchronous message passing primitives are provided

which allow the program running in each node to communicate with neighboring nodes.



6.4. APPLICATIONS

The first application performs a bubble sort using the SIMD simulator. Each PE is provided with two data ele-

ments. The elements are compared and the larger value is passed through the data switch to the PE above it. The result-

ing two elements are compared and the smaller one is passed back to the PE below. This continues until the data ele-

ments are completely sorted.

The second application performs a matrix multiplication on a stream of vectors using the systolic array simulator.

Each of the PEs is preloaded with an element from a 5 x 5 matrix. The stream of vectors is skewed and fed into the top

of the array, and flows through to the bottom. The sums of products are accumulated and passed from left to right with

the final results emerging from the right edge of the array.

The third application performs a simple image processing algorithm on the hypercube simulator. Each PE is

preloaded with an equal-sized square section of a 96 x 96 pixel image. Each pixel is averaged with its four neighboring

pixels in the north, south, east, and west directions. Thus, communications are required only between neighboring PEs.

7. PARALLELISM MEASUREMENTS

The above applications were each simulated using the OSim distributed simulation environment. Each exhibited a

different set of execution characteristics. The applications incorporated the user interfaces from the three parallel archi-

tectures described above. The sections which follow present some initial results in using OSim to predict the maximum

performance which can be achieved by a distributed simulator.

7.1. HARDWARE MODEL OF THE SIMULATOR

The hardware on which the distributed simulation program is executed is assumed to be a general purpose, MINID

machine. Each processor is assumed to have a VAX like architecture. We assume that a processor can communicate

with any other processor through a dedicated communications channel of some fixed bandwidth. It is assumed that com-

munications are reliable.

To expose all parallelism available in the application program, it is assumed that each object is mapped to a dif-

ferent processor. The OSim kernel determines the execution times of application programs based on the following costs:

(1) Each machine instruction requires 1.0 microseconds of execution time. Application programs are compiled

using the DEC Modula-2 compiler for the VAX.
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(2) System calls (such as memory allocation) require 100.0 microseconds

(3) Each interprocessor communication requires 100.0 microseconds to execute a message send or receive primitive,

plus the time required to 'physically' transmit the message over the communications channel.

(4) The bandwidth of the communications channel is assumed to be 10 Mbits/sec.

7.2. RESULTS

The direct execution technique was used to measure the execution times of each application for the uniprocessor

version as well as the distributed version of the program. Speedup figures were computed and reported in Table 1

below.

Table 1: Potential Speedup of Distributed Simulators
Application Processors Speed-Up % of Ideal

32 PE SIMD 34 23.4 68.8
Systolic Array-1 28 7.2 25.7
Systolic Array-2 41 30.5 74.4
Hyper-Image-4 4 3.87 96.8
Hyper-Image-16 16 15.0 93.4
Hyper-Image-64 64 54.9 85.7
Hyper-lmage-256 256 198.4 77.5

The SIMD application had a configuration consisting of 32 PE objects, 1 data switch object, and 1 control unit

object. Using a total of 34 processors, a speed-up of 23.4 was obtained, 68.8% of ideal. It was noticed that there was a

serial execution pattern between the PEs, the switch, and the control unit, which had a limiting effect on the amount of

parallelism in the execution.

The systolic array application was initially configured with 25 PE objects, 2 I/ objects (one to feed data into the

array and one to remove results), and a clock object. Using 28 processors, a speed-up of 7.2 was obtained, which is only

25.7% of ideal. The bottleneck in this application was the large granularity of the I/O objects. The configuration was

reorganized into 25 PE objects, 15 I/O objects (10 to feed individual input streams and 5 to remove individual output

streams), and I clock object. This new configuration used 41 processors, and a potential speed-up of 30.5 was obtained

which is 74.4% of ideal.

The hypercube application used square configurations of 4, 16, 64, and 256 PE objects. The results were particu-

larly encouraging, yielding potential speed-ups as high as 97% of ideal. However, it should be noted that this percentage

drops significantly as the granularity of the computation (pixels per processor) is reduced. This is because communica-
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tions overhead becomes more significant.

8. CONCLUSIONS AND FUTURE RESEARCH

The OSim kernel, a tool for measuring the speedup of distributed simulation programs using an "optimal" simu-

lation strategy, was used to measure the potential speedup available in simulators for several parallel architectures.

Potential speedup measurements were reported and the initial results for simulating parallel computer architectures on a

distributed simulator are encouraging. An overview of the Simon simulation system was presented, along with several

user interfaces for different parallel architectures.

Work will continue in evaluating the relationship between the speedup of a distributed simulator and characteris-

tics of the system being simulated. A distributed version of Simon using the BBN Butterfly Muliprocessor T, is

currently under development in order to compare actual speedup figures using real distributed simulation mechanisms

with those predicted by the optimal simulation policy. Finally, work is also in progress to determine strategies for parti-

tioning simulation programs into objects and mapping these objects to general purpose multiprocessor hardware.
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